SPACEBORNE RADAR REMOTE SENSING: APPLICATIONS AND TECHNIQUES

CHARLES ELACHI

California Institute of Technology and Jet Propulsion Laboratory

Published under the sponsorship of the IEEE Geoscience and Remote Sensing Society.

TUR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITAT HANNOVER HERRENHÄUSER STR. 2 3000 HANNOVER 21

The Institute of Electrical and Electronics Engineers, Inc., New York

Contents

Preface

Chapter 1 Introduction

Spaceborne Remote Sensing in Earth and Planetary Studies 1

Illustrative Examples in Planetary Geoscientific Sensing • Future Outlook in Spaceborne Remote Sensing • Remote Sensing Across the Electromagnetic Spectrum

Types of Spaceborne Radar Sensors 5

Atmospheric Limitations 7

Book Plan 8

PART I IMAGING RADARS

Chapter 2 Wave-Surface Interactions and Geoscientific Application

Wave-Surface Interactions 11

Surface Scattering Models • Absorption Losses and Volume Scattering • Effects of Polarization • Effects of the Frequency • Effects of the Incidence Angle • Scattering from Natural Terrain • Scattering from the Ocean Surface

Solid Surface Sensing 26

Geologic Mapping • Subsurface Penetration • Vegetation and Soil Moisture Mapping • Land Use and Man-Made Features • Planetary Applications

Oceanographic and Polar Ice Applications 38

Surface Waves • Internal Waves • Eddies • Rain Cells • Currents • Bathymetric Features • Ship Wakes • Polar Ice • Glaciers and Ice Sheets

Chapter 3 Principle and Theory

Basic Principles 51

1

9

Antenna Beam Properties • Antenna Array • Signal Properties: Single Pulse • Pulse Modulation: Chirp • Pulse Modulation: Binary • Periodic Signals Properties • Doppler Properties

Real Aperture Radars 63

Imaging Geometry • Range Resolution • Azimuth Resolution • Radar Equation • Fading and Speckle: General Properties • Fading and Speckle Statistics • Geometric Distortion

Synthetic Aperture Radars 72

Synthetic Array Approach • Focused vs Unfocused SAR • Doppler Synthesis Approach • SAR Imaging Coordinate System Ambiguities • Range Migration • Speckle in SAR Images • Earth Rotation and Moving Targets Effects • Ionospheric and Turbulence Effects • Burst Mode SAR • Spotlight Mode SAR

Chapter 4 End-to-End System Design

Signal Generation 85

Generation of High-Frequency Signals • Signal Modulation • Elements of Signal Generation Chain • Signal Parameters Selection

Signal Radiation and Collection 92

Antenna Gain • Antenna Sidelobes and Integrated Range Ambiguity Noise

Signal Reception and Data Handling 96

Signal Digitization • Data Buffering • On Board vs Ground Decoding • Data Recording and Transmission

Data Processing 103

Attitude Errors Compensation • Earth Rotation Effects • Orbit Ellipticity • Range Curvature • Depth of Focus • Processor Complexity

System Design and Parameters Tradeoff 109

Relationships and Flow Diagram • Case of the Seasat SAR (1978) • Case of SIR-B: Variable Illumination (1984) • Case of Magellan SAR: Elliptical Orbit (1990) • Case of SIR-C: Distributed SAR (1990)

Chapter 5 SAR Data Processing

Basic Principles 127

SAR Signals Spectra • Point Target Response • Attitude Drift Effect • Effect of Planetary Rotation • Effect of Orbit Ellipticity • Correlation with Point Target Response

85

127

Digital Processing Algorithms and Processor Architecture 136

Phased Array Formation Approach • Time Domain Correlation • Frequency Domain Correlation • SAW Azimuth Compression • Deramp Approach • Clutterlocking • Autofocusing

Optical Processing 145

Fresnel Zone Plate Properties • Simplified Description of SAR Optical Processing • Range Migration Correction • Hybrid Processing

Post-Processing 151

Geometric Rectification • Radiometric Rectification and Calibration • Multichannel Data Registration • Synthesized Multipolarization Imagery • Multisensor Registration • Image Spectra

163

165

177

199 201

ix

PART II ALTIMETERS

Chapter 6 Geoscientific Applications of Altimeters

Oceanographic Applications 165

Geoid Measurement • Surface Currents Effects • Surface Waves • Surface Wind

Solid Surface Topography Mapping 170

Topographic Mapping Techniques • Data Display Techniques • Multidata Sets Analysis

Chapter 7 Altimeter Principles and Techniques

Measurement Techniques 177

Beam Limited and Pulse Limited Altimeters • Synthetic Aperture Radar Altimeters • Imaging Altimeters • Echo Shape Analysis • Measurement Errors

Sensor and Processor Description 192

Sensor and Processor Elements • The Seasat Altimeter • Scanning Radar Altimeter

PART III SCATTEROMETERS

Chapter 8 Geoscientific Applications

Global Wind Measurement Over the Ocean Surface 201

Relationship Between the Wind Velocity and the Radar Backscatter • Observations Required

Solid Surface Sensing 204

Scattering from Tropical Forests • Soil Moisture Mapping • Global Scattering Statistics

Chapter 9 Principle and Techniques

Side Looking Scatterometers 209

Basic Principle • Measurement Accuracy

Forward (or Backward) Looking Scatterometers 214

Basic Principle • Time Delay (Pulsed) Approach • Doppler Filtering Approach • Effect of the Planet Rotation

Squint-Looking Scatterometer 221

Pulsed Approach • Doppler Approach

Pencil Beam Scatterometer 225

Description of Spaceborne Scatterometer Systems 228

Seasat Scatterometer • NSCAT

Appendix	Characteristics of Some Recent and Planned Spaceborne Radar Sensors	233
References and Relevant Literature		237
Index		253
About the	Author	255

x